top of page

FRATAXINA y CLUSTERES FERRO-SULFURADOS

  1. Gentili HG, Pignataro MF, Olmos J, Pavan MF, Ibañez LI, Santos J, Velazquez Duarte F. CRISPR/Cas9-based edition of frataxin gene in Dictyostelium discoideum. Biochem J. 2023 Oct 11;480(19):1533-1551. doi: 10.1042/BCJ20230244. PMID: 37721041.

  2. Direct Cysteine Desulfurase Activity Determination by NMR and the Study of the Functional Role of Key Structural Elements of Human NFS1.Sewell KE, Gola GF, Pignataro MF, Herrera MG, Noguera ME, Olmos J, Ramírez JA, Capece L, Aran M, Santos J. ACS Chem Biol. 2023 Jul 6. doi: 10.1021/acschembio.3c00147. Epub ahead of print. PMID: 37410592.

  3. Redox sensitive human mitochondrial aconitase and its interaction with frataxin: In vitro and in silico studies confirm that it takes two to tango.  Mansilla S, Tórtora V, Pignataro F, Sastre S, Castro I, Chiribao ML, Robello C, Zeida A, Santos J, Castro L. Free Radic Biol Med. 2023 Feb 2:S0891-5849(23)00049-7. doi: 10.1016/j.freeradbiomed.2023.01.028. Epub ahead of print. PMID: 36738801.

  4. Selection of synthetic proteins to modulate the human frataxin function. ignataro MF, Herrera MG, Fernández NB, Aran M, Gentili HG, Battaglini F, and Santos J. Biotechnol Bioeng. 2022 Oct 12. doi: 10.1002/bit.28263. Epub ahead of print. PMID: 36225115.

  5. Conformational stability, dynamics and function of human frataxin: Tryptophan side chain interplay. Espeche LD, Sewell KE, Castro IH, Capece L, Pignataro MF, Dain L, Santos J. Arch Biochem Biophys. 2021 Nov 19;715:109086. doi: 10.1016/j.abb.2021.109086. Epub ahead of print. PMID: 34801473.

  6. A Highly Conserved Iron-Sulfur Cluster Assembly Machinery between Humans and Amoeba Dictyostelium discoideum: The Characterization of Frataxin.Olmos J, Pignataro MF, Benítez Dos Santos AB, Bringas M, Klinke S, Kamenetzky L, Velazquez F, Santos J. Int J Mol Sci. 2020 Sep 17;21(18):6821. doi: 10.3390/ijms21186821.

  7. Relationship between activity and stability: Design and characterization of stable variants of human frataxin.Castro IH, Bringas M, Doni D, Noguera ME, Capece L, Aran M, Blaustein M, Costantini P, Santos J. Arch Biochem Biophys. 2020 Sep 30;691:108491. doi: 10.1016/j.abb.2020.108491.

  8. Castro IH, Pignataro MF, Sewell KE, Espeche LD, Herrera MG, Noguera ME, Dain L, Nadra AD, Aran M, Smal C, Gallo M, Santos J. Frataxin Structure and Function. Subcell Biochem. 2019;93:393-438. doi: 10.1007/978-3-030-28151-9_13. PMID: 31939159.

  9. Structure of the Human ACP-ISD11 Heterodimer. Herrera MG, Noguera ME, Sewell KE, Agudelo Suárez WA, Capece L, Klinke S, Santos J*. Biochemistry. 2019 Oct 30. doi: 10.1021/acs.biochem.9b00539.

  10. Exploring iron-binding to human frataxin and to selected Friedreich ataxia mutants by means of NMR and EPR spectroscopies. Bellanda M, Maso L, Doni D, Bortolus M, De Rosa E, Lunardi F, Alfonsi A, Noguera ME, Herrera MG, Santos J, Carbonera D, Costantini P. Biochim Biophys Acta Proteins Proteom. 2019 Jul 22. pii: S1570-9639(19)30140-2. doi: 10.1016/j.bbapap.2019.07.007.

  11. Global Implications of Local Unfolding Phenomena, Probed by Cysteine Reactivity in Human Frataxin. Faraj SE, Noguera ME, Delfino JM, Santos J* DOI : 10.1038/s41598-019-39429-2. Sci Rep. 2019 Feb 11;9(1):1731.

  12. Rescuing the Rescuer: On the Protein Complex between the Human Mitochondrial Acyl Carrier Protein and ISD11. Herrera MG, Pignataro MF, Noguera ME, Cruz KM, Santos J*. Publication Date (Web): May 8, 2018 (Letter) DOI: 10.1021/acschembio.8b00184

  13. Biophysical characterisation of the recombinant human frataxin precursor. Castro IH, Ferrari A., Herrera MG, Noguera ME Maso L Benini M, Rufini A, Testi R, Costantini P and Santos J*. FEBS Open Bio. 2018 doi:10.1002/2211-5463.12376

  14. Insights on the conformational dynamics of human frataxin through modifications of loop-1. Noguera ME, Aran M, Smal C, Vazquez DS, Herrera MG, Roman EA, Alaimo N, Gallo M* and Santos J* Arch Biochem Biophys. 2017 Dec 15;636:123-137

  15. Human Frataxin Folds Via an Intermediate State. Role of the C-Terminal Region. Faraj SE, González-Lebrero RM, Roman* EA, Santos J *. Scientific Reports, Nature. 2016 Feb 9;6:20782

  16. Structural characterization of metal binding to a cold-adapted frataxin. Noguera ME, Roman EA, · Rigal RB, · Cousido-Siah A, Mitschler A,· Podjarny A, and ·Santos J*. J Biol Inorg Chem. 2015 Jun;20(4):653-64.

  17. The Alteration of the C-terminal Region of Human Frataxin Distorts its Structural Dynamics and Function. Faraj SE, Roman EA, Aran M, Gallo M*, Santos J*. FEBS J. 2014 Jun 12. doi: 10.1111/febs.12869.

  18. The role of the N-terminal tail for the oligomerization, folding and stability of human frataxin. Faraj SE, Venturutti L, Roman EA, Marino-Buslje CB, Mignone A, Tosatto SCE, Delfino JM*, and Santos J*. FEBS OPEN BIO, 2013 Jul 24;3:310-20.

  19. Frataxin from Psychromonas ingrahamii as a model to study stability modulation within the CyaY protein family. Roman EA, Faraj SE, Cousido-Siah A, Mitschler A, Podjarny A, Santos J*. Biochim Biophys Acta. 2013. Jun;1834(6):1168-80.

  20. Protein Stability and Dynamics Modulation: The Case of Human Frataxin. Roman EA, Faraj SE, Gallo M, Salvay AG,  Ferreiro DU, Santos J*. PLoS ONE 2012. 7(9): e45743.

SARS-CoV-2

  1. Structural and functional comparison of SARS-CoV-2-spike receptor binding domain produced in Pichia pastoris and mammalian cells. Argentinian AntiCovid Consortium. Sci Rep. 2020 Dec 11;10(1):21779

  2. Production of a Highly Immunogenic Antigen from SARS-CoV-2 by Covalent Coupling of the Receptor Binding Domain of Spike Protein to a Multimeric Carrier. Argentinian AntiCovid Consortium. SARS-CoV-2. Sci Rep. 2022 Jan 13;12(1):692. doi: 10.1038/s41598-021-03675-0.

  3. Noseda, D.G.; D’Alessio, C.; Santos, J.; Idrovo-Hidalgo, T.; Pignataro, F.; Wetzler, D.E.; Gentili, H.; Nadra, A.D.; Roman, E.; Paván, C.; et al. Development of a Cost-Effective Process for the Heterologous Production of SARS-CoV-2 Spike Receptor Binding Domain Using Pichia pastoris in Stirred-Tank Bioreactor. Fermentation 2023, 9, 497. https://doi.org/10.3390/fermentation9060497

 

DOCENCIA UNIVERSITARIA

  1. A metabolic control analysis approach to introduce the study of systems in biochemistry: the glycolytic pathway in the red blood cell. Angelani CR, Carabias P, Cruz KM, Delfino JM, de Sautu M, Espelt MV, Ferreira-Gomes MS, Gómez GE*,  Mangialavori IC*, Manzi M,  Pignataro MF, Saffioti NA, Salvatierra Fréchou DM, Santos J*, Schwarzbaum PJ. Biochemistry and Molecular Biology Education. 2018 Jun (Accepted).

METALS

  1. Vazquez DS,   Agudelo WA, Ferrer-Sueta G, Giraudo L, Gonzalez Lebrero MC, Aran M and  Santos J.  Remodelling the Surface of Thioredoxin from Escherichia coli by Grafting an Iron-Binding Site from the CyaY Protein Family 2022.  Dalton transactions. https://doi.org/10.1039/D2DT02599J.

  2. A helix-coil transition induced by the metal ion interaction with a grafted iron-binding site of the CyaY protein family. Vazquez DS, Agudelo WA, Yone A, Vizioli N, Arán M, González Flecha FL, González Lebrero MC*, Santos J*. Dalton Trans. 2015 Feb 7;44(5):2370-9

HIPOXANTINA FOSFORIBOSILTRANSFERASA

  1. The role of the C-terminal region on the oligomeric state and enzymatic activity of Trypanosoma cruzi hypoxanthine phosphoribosyl transferase. Valsecchi WM, Cousido-Siah A, Defelipe LA, Mitschler A, Podjarny A, Santos J*, Delfino*. Biochim Biophys Acta Protein and Proteomics. 2016 Jun;1864(6):655-66

  2. Zoledronate repositioning as a potential trypanocidal drug. Trypanosoma cruzi HPRT an alternative target to be considered.Valsecchi WM, Delfino JM, Santos J, Fernández Villamil SH.Biochem Pharmacol. 2021 Jun;188:114524.

 

TIORREDOXINA

  1. Structural variability of E. coli thioredoxin captured in the crystal structures of single-point mutants. Noguera ME, Vazquez DS, Ferrer-Sueta G, Agudelo WA, Howard E, Rasia RM, Manta B, Cousido-Siah A, Mitschler A, Podjarny A, Santos J*. Sci Rep. 2017 Feb 9;7:42343.

  2. Thioredoxin from Escherichia coli as a Role Model of Molecular Recognition, Folding, Dynamics and Function. Vazquez DS, Delfino JM, Santos J*. Protein Pept Lett. 2015;22(9):801-15.

  3. The E. coli thioredoxin folding mechanism: The key role of the C-terminal helix. Vazquez DS, Sánchez IE*, Garrote A, Sica MP*, Santos J*. Biochim Biophys Acta. 2015 Feb;1854(2):127-37.

  4. Recognition between a short unstructured peptide and a partially folded fragment leads to the thioredoxin fold sharing native-like dynamics. Binolfi A, Fernández CO, Sica MP, Delfino JM*, Santos J*. Proteins: Structure, Function, and Bioinformatics. 2012 May;80(5):1448-64

  5. Gain of local structure in an amphipathic peptide does not require a specific tertiary framework. Ernesto A. Roman, Pablo Rosi, Mariano C. González Lebrero, Rodolfo Wuilloud, F. Luis González Flecha, José M. Delfino*, and Javier Santos*. Proteins: Structure, Function, and Bioinformatics, 2010 Oct;78(13):2757-68

  6. Structural Selection of a Native Fold by Peptide Recognition. Insights into the Thioredoxin Folding Mechanism. Javier Santos, Mauricio P. Sica , Cristina Marino Busjle, Ana M. Garrote, Mario R. Ermácora, and José M. Delfino. Biochemistry, 2009, 48 (3), 595-607.

  7. Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information. Cristina Marino Buslje, Javier Santos, Jose Maria Delfino and Morten Nielsen. Bioinformatics, May 1, 2009; 25(9): 1125-31.

  8. Consolidation of the Thioredoxin Fold by Peptide Recognition: Interaction between E. coli Thioredoxin Fragments 1-93 and 94-108 Javier Santos, Cristina Marino-Buslje, Claudia Kleinman, Mario R. Ermácora, and José M. Delfino. Biochemistry. 2007 May 1; 46(17):5148-5159​

 

PEROXIRREDOXINAS

  1. Exploring the conformational transition between the fully folded and locally unfolded substates of Escherichia coli thiol peroxidase.Vazquez DS , Zeida A , Agudelo WA , Montes MR , Ferrer-Sueta G , Santos J . Phys Chem Chem Phys. 2020 May 7;22(17):9518-9533. doi: 10.1039/d0cp00140f. Epub 2020 Apr 22. PMID: 32319475.

  2. Unraveling the effects of peroxiredoxin 2 nitration; role of C-terminal tyrosine 193. Randall LM, Rizza JD, Parsonage D, Santos J, Mehl RA, Lowther WT, Poole LB, Denicola A. Free Radic Biol Med. 2019 Jul 16. pii: S0891-5849(19)30462-9. doi: 10.1016/j.freeradbiomed.2019.07.016.

  3. Differential parameters between cytosolic 2-Cys peroxiredoxins, PRDX1 and PRDX2. Dalla Rizza J, Randall LM, Santos J, Ferrer-Sueta G, Denicola A. Protein Sci. 2019 Jan;28(1):191-201. doi: 10.1002/pro.3520.

  4. PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase. Reyes AM, Vazquez DS, Zeida AF, Hugo M, Piñeyro MD; De Armas MI; Estrin D; Radi RA, Santos J, Trujillo M. Free Radic Biol Med. 2016 Oct. 15; 101:249-26

  5. Structural changes upon peroxynitrite-mediated nitration of peroxiredoxin 2; nitrated Prx2 resembles its disulfide-oxidized. Randall L, Manta B, Nelson KJ, Santos J, Poole LB, Denicola A. Archives of Biochemistry and Biophysics 2016 Jan 15;590:101-8.

  6. Molecular basis of hydroperoxide specificity in peroxiredoxins: the case of AhpE from Mycobacterium tuberculosis. Zeida A, Reyes MA, Lichtig P, Hugo M, Vazquez DS, Santos J, Gonzalez Flecha FL, Radi R, Estrin, D, Trujillo M. Journal of Biochemistry 2015 Dec 15;54(49):7237-47.

 

BETA-LACTAMEASA

  1. Effects of Serine-to-Cysteine Mutations on b-Lactamase Folding. Javier Santos, Valeria A. Risso, Mauricio P. Sica, and Mario R. Ermácora. Biophys J. 2007 Sep 1;93(5):1707-18.

  2. Mapping the Distribution of Conformational Information throughout a Protein Sequence Leopoldo G. Gebhard, Valeria A. Risso, Javier Santos, Raul G. Ferreyra, Martín E. Noguera, and Mario R. Ermácora . Journal of Molecular Biology. 2006 358(1):280-288.

  3. Folding of an abridged b-lactamse. Santos J., L. G. Gebhard, V. A. Risso, J. P. F. C. Rossi and M. R. Ermácora. Biochemistry. 2004 Feb 17;43(6):1715-23. PMID: 14769049

  4. Efficient export and folding of signal sequenceless B. licheniformis beta-Llactamase in E. coli. María C. Frate, Eric Lietz, Javier Santos, Juan Pablo Rossi, Anthony L. Fink, and Mario R. Ermácora. Eur J Biochem. 2000 Jun; 267(12):3836-47. PMID: 10849003

 

OTROS

  1. Chemical changes in bovine serum albumin photoinduced by pterin. Thomas AH, Zurbano BN, Lorente C, Santos J, Roman EA, Laura Dántola M. J Photochem Photobiol B. 2014 Oct 19;141C:262-268.

  2. An Arsenic Fluorescent Compound as a Novel Probe to Study Arsenic-Binding Proteins. Femia AL, Temprana FC, Santos J, Carbajal L, Amor MS, Mariano Grasselli, Silvia del V. Alonso. Protein J. 2012. Dec;31(8):656-66.

  3. Structure and Interactions of Fish Type III Antifreeze Protein in Solution. Andrés G. Salvay, Frank Gabel, Bernard Pucci, Javier Santos, Eduardo I. Howard, and Christine Ebel. Biophysical Journal, 2010 Jul 21;99(2):609-18.

  4. Electro-optical properties characterization of Fish Type III Antifreeze Protein. Andrés G. Salvay, Javier Santos, Eduardo I. Howard. J Biol Phys. 2008. DOI 10.1007/s10867-008-9080-5

  5. Genetic Engineering and Expression of Properly-Folded Human Glutamic Acid Decarboxylase 65 in E. coli. Santos J., E. Antón, C. M. Busjle, S. N. Valdez, P. Maffía, E. Poskus and M. R. Ermácora. Biotechnol Appl Biochem. 2000 Jun;31 (Pt 3):205-12.

bottom of page